3.5 mm LCP Low Bend Medial Distal Tibia Plate Aiming Instruments. Part of the 3.5 mm LCP Percutaneous Instrument System.
Table of Contents

Introduction

<table>
<thead>
<tr>
<th>3.5 mm LCP Low Bend Medial Distal Tibia Plate</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aiming Instruments</td>
<td>2</td>
</tr>
<tr>
<td>AO Principles</td>
<td>4</td>
</tr>
<tr>
<td>Indications</td>
<td>4</td>
</tr>
</tbody>
</table>

Surgical Technique

<table>
<thead>
<tr>
<th>Preparation</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>8</td>
</tr>
<tr>
<td>Reduce Articular Surface</td>
<td>9</td>
</tr>
<tr>
<td>Insert Plate</td>
<td>10</td>
</tr>
<tr>
<td>Insert Screws</td>
<td>14</td>
</tr>
</tbody>
</table>

Product Information

<table>
<thead>
<tr>
<th>Implants</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruments</td>
<td>25</td>
</tr>
<tr>
<td>Set List</td>
<td>29</td>
</tr>
</tbody>
</table>

Image intensifier control
The 3.5 mm LCP Low Bend Medial Distal Tibia Plate is part of the Synthes locking compression plate (LCP) system that merges locking screw technology with conventional plating techniques. Combi holes in the LCP plate shaft combine a dynamic compression unit (DCU) hole with a locking screw hole. Fixation with the 3.5 mm LCP Low Bend Medial Distal Tibia Plate has many similarities to traditional plate fixation methods, with a few important improvements. Locking screws provide the ability to create a fixed-angle construct while using standard AO plating techniques. Locking capability is important for fixed-angle constructs in osteopenic bone or multifragment fractures where screw purchase is compromised. These screws do not rely on plate-to-bone compression to resist patient load, but function similarly to multiple, small, angled blade plates.

The 3.5 mm LCP Low Bend Medial Distal Tibia Plate Aiming Instruments. Part of the 3.5 mm LCP Percutaneous Instrument System.

The 3.5 mm LCP Percutaneous Instrument System consists of a comprehensive series of aiming arms and instrumentation to facilitate the percutaneous, submuscular insertion of various plates. The 3.5 mm LCP Percutaneous Instrument System provides common instrumentation throughout the system including:

- Screwdrivers
- Threaded drill sleeves
- Drill bits
- Locking/neutral guides
- Compression sleeves
- Trocars
- Pull reduction devices

The 3.5 mm LCP Low Bend Medial Distal Tibia Plates

The 3.5 mm LCP Low Bend Medial Distal Tibia Plate is part of the Synthes locking compression plate (LCP) system that merges locking screw technology with conventional plating techniques. Combi holes provide the flexibility of axial compression and locking capability throughout the length of the plate shaft. Fixation with the 3.5 mm LCP Low Bend Medial Distal Tibia Plate has many similarities to traditional plate fixation methods, with a few important improvements. Locking screws provide the ability to create a fixed-angle construct while using standard AO plating techniques. Locking capability is important for fixed-angle constructs in osteopenic bone or multifragment fractures where screw purchase is compromised. These screws do not rely on plate-to-bone compression to resist patient load, but function similarly to multiple, small, angled blade plates.
Instruments snap into aiming arms for quick assembly and removal

Aiming for all three positions of the Combi hole:
- Locking
- Compression
- Neutral

Color coding identifies instrument compatibility

Insertion handles and aiming arms designated for specific anatomic plates
In 1958, the AO formulated four basic principles, which have become the guidelines for internal fixation.1 They are:

Anatomic reduction
Fracture reduction and fixation to restore anatomical relationships.

Stable fixation
Stability by fixation or splintage, as the personality of the fracture and injury requires.

Preservation of blood supply
Preservation of the blood supply to soft tissue and bone by careful handling.

Early, active mobilization
Early and safe mobilization of the part and the patient.

Indications

The Synthes LCP Distal Tibia Plates are intended for fixation of complex intra- and extra-articular fractures and osteotomies of the distal tibia, as a part of the Synthes Small Fragment LCP System.

Preparation

Required sets

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>105.434/145.434</td>
<td>Small Fragment LCP Instrument and Implant Set, with self-tapping screws (stainless steel or titanium)</td>
</tr>
<tr>
<td>01.112.060/01.112.061</td>
<td>3.5 mm LCP Low Bend Medial Distal Tibia Plate Implant Set (stainless steel or titanium)</td>
</tr>
<tr>
<td>01.113.001</td>
<td>3.5 mm LCP Percutaneous Instrument Set</td>
</tr>
</tbody>
</table>

Optional sets

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>105.90</td>
<td>Bone Forceps Set</td>
</tr>
<tr>
<td>105.954</td>
<td>Small Battery Drive Set, with 14.4 V battery pack</td>
</tr>
<tr>
<td>115.700</td>
<td>Large Distractor Set</td>
</tr>
<tr>
<td>135.292</td>
<td>Minimally Invasive Reduction and Plate Insertion Instrument Set</td>
</tr>
</tbody>
</table>

Complete a preoperative radiographic assessment and prepare the preoperative plan. Determine plate length and the distal screw locations to ensure proper plate position and screw placement in the distal tibial segment and above the articular surface.

Note: For information on fixation principles using conventional and locked plating techniques. Please refer to the *Small Fragment Locking Compression Plate (LCP) Technique Guide.*
1 Position patient

Position the patient supine on a radiolucent table. Viewing the distal tibia under fluoroscopy in both the lateral and AP views is necessary.

2 Attach insertion handle

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.113.021</td>
<td>StarDrive Screwdriver, T15, self-retaining, 272 mm, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.025/03.113.026</td>
<td>Insertion Handle, for 3.5 mm Low Bend Medial Distal Tibia Plate, right or left</td>
</tr>
</tbody>
</table>

Attach the appropriate insertion handle to the plate by aligning the three locating tabs on the handle with the three dimples in the plate. Use the appropriate screwdriver to tighten the insertion handle connecting screw to secure the handle to the plate.

Important: Excessive tightening of the connecting screw may damage the threads in the plate, resulting in loss of fixation.

Note: The insertion handles are not compatible with the 3.5 mm LCP Medial Distal Tibia plates, without tab (238.700-238.711 or 438.700-438.711)
3
Secure aiming arm to plate distally

Instrument

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.113.001/</td>
<td>Aiming Arm, for 3.5 mm LCP Low Bend</td>
</tr>
<tr>
<td>03.113.003</td>
<td>Medial Distal Tibia Plates, right or left</td>
</tr>
</tbody>
</table>

Attach the appropriate aiming arm to the insertion handle. Align the body of the aiming arm with the shaft of the plate.

Finger-tighten the connection bolt to secure the aiming arm to the insertion handle.

Note: Flats on the connection bolt allow use of the 11 mm combination wrench for removing the aiming arm. Do not use the wrench to tighten the connecting bolt during assembly. Doing so could damage the connecting bolt.
Approach

Make a medial incision through the skin and subcutis slightly above the level of ankle joint and over the medial malleolus and distal tibia.

Identify, dissect, and protect the saphenous vein and accompanying saphenous nerve. Deep dissection allows exposure of the medial malleolus and the distal tibial metaphysis. An extraperiosteal approach is usually preferred.
Reduce articular surface

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>394.35</td>
<td>Large Distractor</td>
</tr>
<tr>
<td>532.010</td>
<td>Small Battery Drive</td>
</tr>
<tr>
<td>532.022</td>
<td>Quick Coupling for K-Wires</td>
</tr>
</tbody>
</table>

Reduce the fracture fragments and confirm reduction using image intensification. Secure fragments with appropriately placed bone screws. The plate may be secured temporarily with one of the following:

- Reduction forceps
- Independent Kirschner wires
- Independent lag screws
- Large distractor
- External fixator
- K-wires through the plate
- Lag screws through the plate
- Locking screws through the plate

Note: Locking screws do not provide interfragment compression; therefore, any compression must be achieved with standard lag screws. The articular fractures must be reduced and compressed before fixation of the plate with locking screws.
Insert Plate

1

Insert plate

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>325.010</td>
<td>Soft Tissue Retractor, small, extendible</td>
</tr>
<tr>
<td>328.010</td>
<td>Soft Tissue Retractor, large, extendible</td>
</tr>
</tbody>
</table>

Prior to insertion use a round smooth periosteal elevator or soft tissue retractor.

Carefully insert the plate under the soft tissues and along the anteromedial face of the tibia. The aiming arm and insertion handle can be used to control the plate orientation during insertion. Be careful to avoid deviation of the plate from the tibia itself.

Center the plate on the medial malleolus.
2

Position plate and fix provisionally

Confirm the plate orientation, length, and distal location with fluoroscopy in the anteroposterior and lateral planes. Confirm the fracture reduction. Make any adjustments before inserting screws.

Note: This locking plate is precontoured to fit the medial distal tibia. If the plate contour is changed, it is important to check the position of the screws relative to the joint, using the screw placement verification technique (page 14).

If the plate contour is changed, the aiming arm may not properly target the holes in the plate.

Optional instrument

03.113.015 Pull Reduction Device, for 3.5 mm LCP Percutaneous Instrument System

The plate may be temporarily held in place using:

- Pull reduction device
- 4.0 mm cancellous bone screw in a distal Combi hole
- Standard plate holding forceps
- K-wires through the plate

Any of these options will allow moving the plate into a final position, and will also prevent plate rotation while inserting the first locking screw.

The K-wire shown in the C-arm image is parallel to the joint and is inserted through the K-wire hole in the plate. Placing the K-wire in this location illustrates the proximity to the joint.

Note: Ensure proper reduction before inserting the first locking screw. Once locking screws are inserted, further reduction is not possible without loosening the locking screws.
Secure aiming arm to plate proximally

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.113.009</td>
<td>Outer Sleeve, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.010</td>
<td>Trocar with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.011</td>
<td>Scalpel with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.022</td>
<td>1.6 mm Percutaneous Threaded Wire Guide</td>
</tr>
</tbody>
</table>

Determine the hole in the aiming arm corresponding to the most proximal hole in the plate.

Attach a blade to the scalpel handle. The scalpel will pass through the aiming holes and assist in performing a minimally invasive and accurate incision. (The scalpel will pass through the aiming arm only as far as the top surface of the plate.)

Remove the scalpel from the aiming arm.

Note: Remove the scalpel blade before storing the handle in the graphic case.

Assemble an outer sleeve onto the trocar with handle until it fully seats.

While squeezing inward on the two latches of the outer sleeve, insert the trocar assembly into the appropriate aiming arm hole with the arrows on the outer sleeve oriented in the same direction as the “LOCKING” arrow on the aiming arm.

Push the trocar assembly down to the plate through the incision until the trocar tip contacts the plate and the two latches of the outer sleeve securely snap into the aiming arm.

Remove the trocar.
Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.113.001</td>
<td>1.6 mm Drill Tip Guide Wire, 200 mm</td>
</tr>
<tr>
<td>03.113.014</td>
<td>Handle for Percutaneous Threaded Drill Guides</td>
</tr>
<tr>
<td>03.113.022</td>
<td>1.6 mm Percutaneous Threaded Wire Guide</td>
</tr>
</tbody>
</table>

Thread the handle into the wire guide. Insert the handle and guide assembly through the outer sleeve, and securely thread it to the plate. Turn the handle counterclockwise to disengage and remove it from the guide.

Note: Securely tighten the wire guide to the plate, to achieve a stable construct between the aiming arm and the plate.

Following fluoroscopic confirmation of a satisfactory plate location on the tibia proximally, a 1.6 mm drill tip guide wire can be inserted into the bone through the percutaneous wire guide to secure the plate location. This 1.6 mm wire may be placed unicortically or bicortically.
1 Screw placement verification (optional)

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02.113.001</td>
<td>1.6 mm Drill Tip Guide Wire, 200 mm</td>
</tr>
<tr>
<td>03.113.020</td>
<td>2.8 mm Percutaneous Threaded Drill Guide</td>
</tr>
<tr>
<td>03.113.022</td>
<td>1.6 mm Percutaneous Threaded Wire Guide</td>
</tr>
<tr>
<td>03.113.024</td>
<td>2.8 mm Calibrated Drill Bit (with stop)</td>
</tr>
<tr>
<td>323.060</td>
<td>Direct Measuring Device</td>
</tr>
<tr>
<td>532.010</td>
<td>Small Battery Drive</td>
</tr>
<tr>
<td>532.022</td>
<td>Quick Coupling for K-Wires</td>
</tr>
<tr>
<td>511.770*</td>
<td>Torque Limiting Attachment, 1.5 Nm</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>511.773</td>
<td>Torque Limiting Attachment, 1.5 Nm, quick coupling</td>
</tr>
</tbody>
</table>

The orientation and direction of the locking screws depend on the plate contour. The final screw position may be verified with a K-wire before insertion. This is especially important when the plate has been manually contoured with a bending press, drawn to the bone with a screw or reduction device, or applied near the joint.

With the 1.6 mm percutaneous threaded wire guide in the locking hole, drive a 1.6 mm drill tip guide wire to the desired depth.

Verify K-wire placement under image intensification to determine if final screw placement will be acceptable.

Important: The K-wire position represents the final position of the locking screw. Confirm that the K-wire does not enter the joint.

* Also available
Measure for screw length by sliding the tapered end of the direct measuring device over the K-wire down to the wire sleeve.

Remove the direct measuring device, K-wire and 1.6 mm percutaneous threaded wire guide.

Insert a 2.8 mm percutaneous threaded drill guide into the locking hole and drill to the measured depth, using the 2.8 mm calibrated drill bit. Remove the threaded drill guide and insert the appropriate length locking screw.
2

Insert distal screws

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.113.019</td>
<td>Screwdriver Shaft StarDrive, 165 mm</td>
</tr>
<tr>
<td>03.113.020</td>
<td>2.8 mm Percutaneous Threaded Drill Guide</td>
</tr>
<tr>
<td>03.113.021</td>
<td>Screwdriver StarDrive, T15, self-retaining, 272 mm, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.024</td>
<td>2.8 mm Calibrated Drill Bit (with stop)</td>
</tr>
<tr>
<td>03.113.028</td>
<td>Depth Gauge for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>323.060</td>
<td>Direct Measuring Device</td>
</tr>
<tr>
<td>511.770*</td>
<td>Torque Limiting Attachment, 1.5 Nm</td>
</tr>
<tr>
<td>or 511.773</td>
<td>Torque Limiting Attachment, 1.5 Nm, quick coupling</td>
</tr>
</tbody>
</table>

Determine the combination of screws to be used for fixation. If a combination of locking and cortex screws will be used, cortex screws should be inserted first to pull the plate to the bone.

If a locking screw will be used as the first screw, ensure the plate is held securely to the bone to prevent plate rotation as the screw is locked to the plate.

In distal Combi holes
For nonlocking screws, use standard AO screw insertion technique. The two Combi holes in the plate head accept 3.5 mm cortex or 4.0 mm cancellous bone screws. When using a cortex or cancellous bone screw in these Combi holes, the screwhead will be recessed in the hole.

Note: When evaluating screw options, remember the 3.5 mm conical screws have a lower profile than the locking screws. 3.7 mm cannulated locking screws are also available.

* Also available
For distal locking screws
Thread the 2.8 mm percutaneous threaded drill guide into a distal locking hole until fully seated.

Use the 2.8 mm calibrated drill bit with stop to drill to the desired depth.

Remove the drill and note the indicated drill depth on the gauge.

Note: The plastic stop is designed to ride up against the 2.8 mm percutaneous drill guide. The side of the stop facing the drill guide indicates the correct drilling depth.

Remove the drill guide.
2. Insert distal screws continued

Technique tip: Use the tip of the handle for percutaneous threaded drill guides as a pin wrench to loosen the drill guides from the plate.

Inserting locking screws
Insert the locking screw under power, using the torque limiting attachment and the StarDrive screwdriver shaft, or insert manually using the StarDrive screwdriver. Be sure the plate is held securely to the bone to prevent rotation as the screw is locked to the plate.

When using the torque limiting attachment, the screw is securely locked into the plate when a “click” is heard.

Note: Always use a torque limiting attachment when using power with the StarDrive screwdriver shaft.
3

Insert 3.5 mm cortex screws in shaft

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.113.009</td>
<td>Outer Sleeve, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.010</td>
<td>Trocar with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.011</td>
<td>Scalpel with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.012</td>
<td>Neutral Drill Guide, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.013</td>
<td>Compression Drill Guide, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.017</td>
<td>Stopper, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.023</td>
<td>2.5 mm Calibrated Drill Bit (with stop)</td>
</tr>
<tr>
<td>03.113.028*</td>
<td>Depth Gauge, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>314.02</td>
<td>Small Hexagonal Screwdriver with Holding Sleeve</td>
</tr>
<tr>
<td>314.03</td>
<td>Small Hexagonal Screwdriver Shaft</td>
</tr>
<tr>
<td>323.060</td>
<td>Direct Measuring Device</td>
</tr>
<tr>
<td>532.010</td>
<td>Small Battery Drive</td>
</tr>
<tr>
<td>532.013</td>
<td>Quick Coupling for Drill Bits</td>
</tr>
</tbody>
</table>

Create an incision through the appropriate aiming arm hole.

Assemble the trocar handle with an outer sleeve.

Also available
3. Insert 3.5 mm cortex screws in shaft continued

While squeezing inward on the two latches of the outer sleeve, insert the trocar assembly into the appropriate aiming arm hole, with the arrows on the outer sleeve oriented in the same direction as the “CORTEX” arrow on the aiming arm.

Push the trocar assembly down to the plate through the incision until the trocar tip contacts the plate and the two latches of the outer sleeve securely snap into the aiming arm.

Remove the trocar.
Insert the appropriate drill guide, neutral or compression, into the outer sleeve until it securely snaps into place.

Important: When using the compression guide, orient the tab on the compression guide with the slot on the outer sleeve.

Use the 2.5 mm calibrated drill bit with stop to drill to the desired depth. Proper screw length can be determined from the calibration on the drill bit aligned with the top of the drill guide.

Important: The side of the stop facing the drill guide indicates the correct drilling depth.

Alternative technique

Screw length can also be determined with the use of the depth gauge. Remove the drill guide and insert the depth gauge into the outer sleeve to the previously drilled depth. Proper screw length is indicated by the gauge marking aligned with the top of the outer sleeve.

Remove the drill bit and drill guide.

Insert proper length 3.5 mm cortex screw, using the appropriate screwdriver.

Repeat this process to insert as many 3.5 mm cortex screws as necessary into the plate shaft. Mark each screw location in the aiming arm with a stopper.

Important: All 3.5 mm cortex screws must be inserted before insertion of locking screws.

Note: Inserting cortex screws into the plate may cause the plate to flex. If the plate contour is changed, the aiming arm may not properly target the holes in the plate.
4

Insert 3.5 mm locking screws in shaft

Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.113.009</td>
<td>Outer Sleeve, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.010</td>
<td>Trocar with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.011</td>
<td>Scalpel with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.014</td>
<td>Handle for Percutaneous Threaded Drill Guides</td>
</tr>
<tr>
<td>03.113.019</td>
<td>Screwdriver Shaft StarDrive, 165 mm</td>
</tr>
<tr>
<td>03.113.020</td>
<td>2.8 mm Percutaneous Threaded Drill Guide</td>
</tr>
<tr>
<td>03.113.021</td>
<td>Screwdriver StarDrive, T15, self-retaining, 272 mm, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.024</td>
<td>2.8 mm Calibrated Drill Bit (with stop)</td>
</tr>
<tr>
<td>03.113.028*</td>
<td>Depth Gauge, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>511.770*</td>
<td>Torque Limiting Attachment, 1.5 Nm</td>
</tr>
<tr>
<td>511.773</td>
<td>Torque Limiting Attachment, 1.5 Nm, quick coupling</td>
</tr>
</tbody>
</table>

Create an incision through the appropriate aiming arm hole. Assemble an outer sleeve onto the trocar with handle until it is fully seated.

While squeezing the two latches of the outer sleeve, insert the assembly into the aiming arm hole with the arrows on the outer sleeve aligned in same the direction as the “LOCKING” arrow on the aiming arm.

Push down to the plate through the incision until the trocar tip contacts the plate. Push the outer sleeve down the trocar shaft the remainder of the way until the latches of the outer sleeve snap into the aiming arm.

*Also available
Remove the trocar.

Thread the 2.8 mm percutaneous threaded drill guide into a locking hole until fully seated.

Use the 2.8 mm calibrated drill bit with stop to drill to the desired depth.

Remove the drill and note the drill depth indicated by the stop.

Insert the proper length 3.5 mm locking screws in the same manner described for the distal locking screws.

5

Remove aiming arm and insertion handle

Instruments

| 03.113.021 | Screwdriver StarDrive, T15, self-retaining, 272 mm, for 3.5 mm LCP Percutaneous Instrument System |
| 321.16 | Combination Wrench, 11 mm width across flats |

Remove all outer sleeves.

Turn the connecting bolt on the aiming arm counterclockwise to loosen and remove the aiming arm from the insertion handle. The 11 mm combination wrench may be used, if necessary.

Remove the insertion handle from the plate by loosening the connecting screw with the T15 StarDrive screwdriver.

Remove any remaining guide wires.
Screws Used with the 3.5 mm LCP Low Bend Medial Distal Tibia Plate
Stainless Steel and Titanium

2.7 mm Cortex Screw
- May be used in the distal locking holes
- Compresses the plate to the bone

3.5 mm Cortex Screw
- May be used in the DCU portion of the Combi holes in the plate shaft
- Compresses the plate to the bone or creates axial compression
- Self-tapping tip

3.5 mm Locking Screw
- Creates a locked, fixed-angle screw/plate construct
- Self-tapping tip
- Used in the locking portion of the Combi holes or in round locking holes
- Threaded conical head

3.7 mm Cannulated Locking Screw
- Creates a locked, fixed-angle screw/plate construct
- Self-drilling, self-tapping tip
- Threaded conical head

3.7 mm Cannulated Conical Screw
- Compresses the plate to the lateral femoral condyle
- Smooth conical head
- Self-drilling, self-tapping tip

4.0 mm Cancellous Bone Screw
- May be used in the DCU portion of the Combi holes in the plate shaft
- Compresses the plate to the bone or creates axial compression
- Fully or partially threaded shaft
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.113.001</td>
<td>Aiming Arm, for 3.5 mm LCP Low Bend Medial Distal Tibia Plate, right</td>
</tr>
<tr>
<td>03.113.003</td>
<td>Aiming Arm, for 3.5 mm LCP Low Bend Medial Distal Tibia Plate, left</td>
</tr>
<tr>
<td>03.113.009</td>
<td>Outer Sleeve, for 3.5 mm LCP Percutaneous Instrument System, self retaining</td>
</tr>
<tr>
<td>03.113.010</td>
<td>Trocar with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.011</td>
<td>Scalpel with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.012</td>
<td>Neutral Drill Guide, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>03.113.013</td>
<td>Compression Drill Guide, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.014</td>
<td>Handle for Percutaneous Threaded Drill Guides</td>
</tr>
<tr>
<td>03.113.015</td>
<td>Pull Reduction Device, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.016</td>
<td>Nut for Pull Reduction Device</td>
</tr>
<tr>
<td>03.113.017</td>
<td>Stopper, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.019</td>
<td>Screwdriver Shaft StarDrive, 165 mm</td>
</tr>
<tr>
<td>03.113.020</td>
<td>2.8 mm Percutaneous Threaded Drill Guide</td>
</tr>
<tr>
<td>03.113.021</td>
<td>Screwdriver StarDrive, T15, self-retaining, 272 mm, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>03.113.022</td>
<td>1.6 mm Percutaneous Threaded Wire Guide</td>
</tr>
<tr>
<td>03.113.023</td>
<td>2.5 mm Calibrated Drill Bit</td>
</tr>
<tr>
<td>03.113.024</td>
<td>2.8 mm Calibrated Drill Bit</td>
</tr>
<tr>
<td>03.113.025</td>
<td>Insertion Handle for 3.5 mm LCP Low Bend Medial Distal Tibia Plate, right</td>
</tr>
<tr>
<td>03.113.026</td>
<td>Insertion Handle, for 3.5 mm LCP Low Bend Medial Distal Tibia Plate, left</td>
</tr>
<tr>
<td>311.431</td>
<td>Large Handle with quick coupling</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>314.55</td>
<td>Small Hexagonal Screwdriver Shaft, long, for 3.5 mm cortex and 4.0 mm cancellous bone screws</td>
</tr>
<tr>
<td>314.57</td>
<td>Small Hexagonal Screwdriver, long, for 3.5 mm cortex and 4.0 mm cancellous bone screws</td>
</tr>
<tr>
<td>319.35</td>
<td>1.6 mm Cleaning Stylet</td>
</tr>
<tr>
<td>319.46</td>
<td>2.8 mm Cleaning Stylet</td>
</tr>
<tr>
<td>321.16</td>
<td>Combination Wrench, 11 mm width across flats</td>
</tr>
<tr>
<td>323.060</td>
<td>Direct Measuring Device</td>
</tr>
</tbody>
</table>
LCP Small Fragment Percutaneous Instrument System,
for 3.5 mm LCP Low Bend Medial Distal Tibia Plates (01.113.004)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.113.001</td>
<td>Graphic Case for 3.5 mm LCP Percutaneous Instrument System, for 3.5 mm LCP Low Bend Medial Distal Tibia Plates</td>
</tr>
<tr>
<td>03.113.001</td>
<td>1.6 mm Drill Tip Guide Wire, 200 mm</td>
</tr>
<tr>
<td>03.113.002</td>
<td>2.5 mm Calibrated Drill Bit, quick coupling, 250 mm/95 mm</td>
</tr>
<tr>
<td>03.113.003</td>
<td>Aiming Arm, for 3.5 mm LCP Low Bend Medial Distal Tibia Plate, right</td>
</tr>
<tr>
<td>03.113.004</td>
<td>Aiming Arm, for 3.5 mm LCP Low Bend Medial Distal Tibia Plate, left</td>
</tr>
<tr>
<td>03.113.005</td>
<td>Outer Sleeve, for 3.5 mm LCP Percutaneous Instrument System, self retaining</td>
</tr>
<tr>
<td>03.113.006</td>
<td>Trocar with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.007</td>
<td>Scalpel with Handle, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.008</td>
<td>Neutral Drill Guide, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.009</td>
<td>Compression Drill Guide, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.010</td>
<td>Handle for Percutaneous Threaded Drill Guides</td>
</tr>
<tr>
<td>03.113.011</td>
<td>Pull Reduction Device, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.012</td>
<td>Nut for Pull Reduction Device</td>
</tr>
<tr>
<td>03.113.013</td>
<td>Stopper, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.014</td>
<td>Screwdriver Shaft StarDrive, 165 mm</td>
</tr>
<tr>
<td>03.113.015</td>
<td>2.8 mm Percutaneous Threaded Drill Guide</td>
</tr>
<tr>
<td>03.113.016</td>
<td>Screwdriver StarDrive, T15, self-retaining, 272 mm, for 3.5 mm LCP Percutaneous Instrument System</td>
</tr>
<tr>
<td>03.113.017</td>
<td>1.6 mm Percutaneous Threaded Wire Guide</td>
</tr>
</tbody>
</table>

Note: For additional information, please refer to package insert.
For detailed cleaning and sterilization instructions, please refer to
http://us.synthes.com/Medical+Community/Cleaning+and+Sterilization.htm
or to the below listed inserts, which will be included in the shipping container:
- Processing Synthes Reusable Medical Devices—Instruments, Instrument Trays
 and Graphic Cases—DJ1305
- Processing Non-sterile Synthes Implants—DJ1304

Synthes